The Monge Problem for Distance Cost in Geodesic Spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Monge Problem for Distance Cost in Geodesic Spaces

We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish space and dL is a geodesic Borel distance which makes (X, dL) a non branching geodesic space. We show that under the assumption that geodesics are d-continuous and locally compact, we can reduce the transport problem to 1-dimensional transport problems along geodesics. We introduce two assumptions on the ...

متن کامل

The Monge Problem in Geodesic Spaces

We address the Monge problem in metric spaces with a geodesic distance: (X, d) is a Polish non branching geodesic space. We show that we can reduce the transport problem to 1-dimensional transport problems along geodesics. We introduce an assumption on the transport problem π which implies that the conditional probabilities of the first marginal on each geodesic are continuous. It is known that...

متن کامل

The Geodesic Problem in Nearmetric Spaces

In this article, we study the geodesic problem in a generalized metric space, in which the distance function satisfies a relaxed triangle inequality d(x, y) ≤ σ(d(x, z) +d(z, y)) for some constant σ ≥ 1, rather than the usual triangle inequality. Such a space is called a nearmetric space. We show that many well-known results in metric spaces (e.g. Ascoli-Arzelà theorem) still hold in nearmetric...

متن کامل

The Geodesic Problem in Quasimetric Spaces

In this article, we study the geodesic problem in a generalized metric space, in which the distance function satisfies a relaxed triangle inequality d(x, y) ≤ σ(d(x, z) +d(z, y)) for some constant σ ≥ 1, rather than the usual triangle inequality. Such a space is called a quasimetric space. We show that many well-known results in metric spaces (e.g. Ascoli-Arzelà theorem) still hold in quasimetr...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2013

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-013-1663-8